比较aarch64翻译amd64的AVX2和指令集吞吐量

比较对象:

支持AVX2时间表

exagear

本文exagear测试版本是2.0.0.1, 最早支持时间未知,可以在https://mirrors.huaweicloud.com/kunpeng/archive/ExaGear/下载,最早的版本是20年 [ExaGear_V100R002C00.tar.gz]不支持avx2(https://mirrors.huaweicloud.com/kunpeng/archive/ExaGear/ExaGear_V100R002C00.tar.gz),猜测是22年到23年这个时间段支持了。
exagear不支持鲲鹏之外的cpu上运行,不然会提示Unsupported CPU,破解方法参考https://hu60.cn/q.php/bbs.topic.102147.html

sudo -i
# 破解 ubt_x32a64_al
f='/opt/exagear/bin/ubt_x32a64_al';
mv "$f" "$f.origin";
perl -pe 's/\x{02}\x{7C}\x{18}\x{53}(?!\x{1F}\x{5C})/\x{02}\x{09}\x{80}\x{D2}/g' < "$f.origin" > "$f";
chmod +x "$f";

# 破解 ubt_x64a64_al
f='/opt/exagear/bin/ubt_x64a64_al';
mv "$f" "$f.origin";
perl -pe 's/\x{02}\x{7C}\x{18}\x{53}(?!\x{1F}\x{5C})/\x{02}\x{09}\x{80}\x{D2}/g' < "$f.origin" > "$f";
chmod +x "$f";

box64

2024.7.9 https://github.com/ptitSeb/box64/releases/tag/v0.3.0
本文通过pi-labs进行部署

fex

2024.7.3 https://fex-emu.com/FEX-2407/

rosetta 2

2024.6.10 wwdc 2024

prism

2024.11.6 windows 11 canary https://blogs.windows.com/windows-insider/2024/11/06/announcing-windows-11-insider-preview-build-27744-canary-channel/)

qemu

2022.12.15 https://wiki.qemu.org/ChangeLog/7.2

测试版本

box64 --version
Dynarec for ARM64, with extension: ASIMD AES CRC32 PMULL ATOMICS SHA1 SHA2 PageSize:4096 Running on - with 2 Cores
Will use Hardware counter measured at 24.0 MHz emulating 3.0 GHz
Params database has 95 entries
Box64 with Dynarec v0.3.1 b46925e7 built on Nov 10 2024 06:21:12

AVX2吞吐量测试方法

计算原理解释

借用项目https://github.com/carlushuang/avx_flops
其中

#define AVX2_FMA_FP32_FLOP (10*2*8)
static void avx2_fma_fp32_kernel(uint64_t loop){
    asm volatile(
        "   movq        %0, %%rax               \n"
        "   vxorps      %%ymm0, %%ymm0, %%ymm0  \n"
        "   vxorps      %%ymm1, %%ymm1, %%ymm1  \n"
        "   vxorps      %%ymm2, %%ymm2, %%ymm2  \n"
        "   vxorps      %%ymm3, %%ymm3, %%ymm3  \n"
        "   vxorps      %%ymm4, %%ymm4, %%ymm4  \n"
        "   vxorps      %%ymm5, %%ymm5, %%ymm5  \n"
        "   vxorps      %%ymm6, %%ymm6, %%ymm6  \n"
        "   vxorps      %%ymm7, %%ymm7, %%ymm7  \n"
        "   vxorps      %%ymm8, %%ymm8, %%ymm8  \n"
        "   vxorps      %%ymm9, %%ymm9, %%ymm9  \n"
        "0:                                     \n"
        "   vfmadd231ps %%ymm0, %%ymm0, %%ymm0  \n"
        "   vfmadd231ps %%ymm1, %%ymm1, %%ymm1  \n"
        "   vfmadd231ps %%ymm2, %%ymm2, %%ymm2  \n"
        "   vfmadd231ps %%ymm3, %%ymm3, %%ymm3  \n"
        "   vfmadd231ps %%ymm4, %%ymm4, %%ymm4  \n"
        "   vfmadd231ps %%ymm5, %%ymm5, %%ymm5  \n"
        "   vfmadd231ps %%ymm6, %%ymm6, %%ymm6  \n"
        "   vfmadd231ps %%ymm7, %%ymm7, %%ymm7  \n"
        "   vfmadd231ps %%ymm8, %%ymm8, %%ymm8  \n"
        "   vfmadd231ps %%ymm9, %%ymm9, %%ymm9  \n"
        "   subq        $0x1,   %%rax           \n"
        "   jne     0b                          \n"
        :
        :"r"(loop)
        :   "ymm0","ymm1","ymm2","ymm3","ymm4",
            "ymm5","ymm6","ymm7","ymm8","ymm9" );
}

#define AVX2_FMA_FP64_FLOP (10*2*4)
static void avx2_fma_fp64_kernel(uint64_t loop){
    asm volatile(
        "   movq        %0, %%rax               \n"
        "   vxorpd      %%ymm0, %%ymm0, %%ymm0  \n"
        "   vxorpd      %%ymm1, %%ymm1, %%ymm1  \n"
        "   vxorpd      %%ymm2, %%ymm2, %%ymm2  \n"
        "   vxorpd      %%ymm3, %%ymm3, %%ymm3  \n"
        "   vxorpd      %%ymm4, %%ymm4, %%ymm4  \n"
        "   vxorpd      %%ymm5, %%ymm5, %%ymm5  \n"
        "   vxorpd      %%ymm6, %%ymm6, %%ymm6  \n"
        "   vxorpd      %%ymm7, %%ymm7, %%ymm7  \n"
        "   vxorpd      %%ymm8, %%ymm8, %%ymm8  \n"
        "   vxorpd      %%ymm9, %%ymm9, %%ymm9  \n"
        "0:                                     \n"
        "   vfmadd231pd %%ymm0, %%ymm0, %%ymm0  \n"
        "   vfmadd231pd %%ymm1, %%ymm1, %%ymm1  \n"
        "   vfmadd231pd %%ymm2, %%ymm2, %%ymm2  \n"
        "   vfmadd231pd %%ymm3, %%ymm3, %%ymm3  \n"
        "   vfmadd231pd %%ymm4, %%ymm4, %%ymm4  \n"
        "   vfmadd231pd %%ymm5, %%ymm5, %%ymm5  \n"
        "   vfmadd231pd %%ymm6, %%ymm6, %%ymm6  \n"
        "   vfmadd231pd %%ymm7, %%ymm7, %%ymm7  \n"
        "   vfmadd231pd %%ymm8, %%ymm8, %%ymm8  \n"
        "   vfmadd231pd %%ymm9, %%ymm9, %%ymm9  \n"
        "   subq        $0x1,   %%rax           \n"
        "   jne     0b                          \n"
        :
        :"r"(loop)
        :   "ymm0","ymm1","ymm2","ymm3","ymm4",
            "ymm5","ymm6","ymm7","ymm8","ymm9" );
}

计算公式为
Screenshot 2024-11-15 at 10.25.21 AM
其中总FLOPs为 loop * 每次循环执行指令数,这里是AVX2_FMA_FP32_FLOP为160次
FMA_FP32(单精度)每次循环迭代的浮点运算次数:10(指令) * 2(运算) * 8(数据) = 160 次,同理,FMA_FP64(双精度)是1024。
其中10条指令是在每次循环迭代中,有10条 vfmadd231ps 指令,2次运算( *= Fused Multiply-Add),8个数据是指每个 ymm 寄存器包含8个单精度浮点数,或者4个双精度浮点数,而前面的vfmadd231ps是指Fused Multiply-Add of Packed Single- Precision Floating-Point Values,计算8个单精度浮点数,后面的vfmadd231pd是指Fused Multiply-Add of Packed Double- Precision Floating-Point Values,计算4个双精度浮点数。
总循环次数定义为#define LOOP 0xc0000000
所以总FLOPs为 160 * 3,221,225,472 = 515,396,075,520 次,然后再除以执行时间 * 10 * 9即为 GFLOPs

Windows转译层代码

MSVC并不支持上述的汇编写法,用intrinsics写

#define AVX2_FMA_FP32_FLOP (10*2*8)
static void avx2_fma_fp32_kernel(uint64_t loop) {
    // Initialize vectors to zero
    __m256 ymm0 = _mm256_setzero_ps();
    __m256 ymm1 = _mm256_setzero_ps();
    __m256 ymm2 = _mm256_setzero_ps();
    __m256 ymm3 = _mm256_setzero_ps();
    __m256 ymm4 = _mm256_setzero_ps();
    __m256 ymm5 = _mm256_setzero_ps();
    __m256 ymm6 = _mm256_setzero_ps();
    __m256 ymm7 = _mm256_setzero_ps();
    __m256 ymm8 = _mm256_setzero_ps();
    __m256 ymm9 = _mm256_setzero_ps();

    // Main computation loop
    while (loop--) {
        // vfmadd231ps: multiply and add - (a * b) + c
        ymm0 = _mm256_fmadd_ps(ymm0, ymm0, ymm0);
        ymm1 = _mm256_fmadd_ps(ymm1, ymm1, ymm1);
        ymm2 = _mm256_fmadd_ps(ymm2, ymm2, ymm2);
        ymm3 = _mm256_fmadd_ps(ymm3, ymm3, ymm3);
        ymm4 = _mm256_fmadd_ps(ymm4, ymm4, ymm4);
        ymm5 = _mm256_fmadd_ps(ymm5, ymm5, ymm5);
        ymm6 = _mm256_fmadd_ps(ymm6, ymm6, ymm6);
        ymm7 = _mm256_fmadd_ps(ymm7, ymm7, ymm7);
        ymm8 = _mm256_fmadd_ps(ymm8, ymm8, ymm8);
        ymm9 = _mm256_fmadd_ps(ymm9, ymm9, ymm9);
    }

    // Prevent the compiler from optimizing away the computation
    // by making the results volatile
    volatile float result;
    result = _mm256_cvtss_f32(ymm0);
    result = _mm256_cvtss_f32(ymm1);
    result = _mm256_cvtss_f32(ymm2);
    result = _mm256_cvtss_f32(ymm3);
    result = _mm256_cvtss_f32(ymm4);
    result = _mm256_cvtss_f32(ymm5);
    result = _mm256_cvtss_f32(ymm6);
    result = _mm256_cvtss_f32(ymm7);
    result = _mm256_cvtss_f32(ymm8);
    result = _mm256_cvtss_f32(ymm9);
}


#define AVX2_FMA_FP64_FLOP (10*2*4)
static void avx2_fma_fp64_kernel(uint64_t loop) {
    // Initialize vectors to zero
    __m256d ymm0 = _mm256_setzero_pd();
    __m256d ymm1 = _mm256_setzero_pd();
    __m256d ymm2 = _mm256_setzero_pd();
    __m256d ymm3 = _mm256_setzero_pd();
    __m256d ymm4 = _mm256_setzero_pd();
    __m256d ymm5 = _mm256_setzero_pd();
    __m256d ymm6 = _mm256_setzero_pd();
    __m256d ymm7 = _mm256_setzero_pd();
    __m256d ymm8 = _mm256_setzero_pd();
    __m256d ymm9 = _mm256_setzero_pd();

    // Main computation loop
    while (loop--) {
        // vfmadd231pd: multiply and add - (a * b) + c
        ymm0 = _mm256_fmadd_pd(ymm0, ymm0, ymm0);
        ymm1 = _mm256_fmadd_pd(ymm1, ymm1, ymm1);
        ymm2 = _mm256_fmadd_pd(ymm2, ymm2, ymm2);
        ymm3 = _mm256_fmadd_pd(ymm3, ymm3, ymm3);
        ymm4 = _mm256_fmadd_pd(ymm4, ymm4, ymm4);
        ymm5 = _mm256_fmadd_pd(ymm5, ymm5, ymm5);
        ymm6 = _mm256_fmadd_pd(ymm6, ymm6, ymm6);
        ymm7 = _mm256_fmadd_pd(ymm7, ymm7, ymm7);
        ymm8 = _mm256_fmadd_pd(ymm8, ymm8, ymm8);
        ymm9 = _mm256_fmadd_pd(ymm9, ymm9, ymm9);
    }

    // Prevent the compiler from optimizing away the computation
    // by making the results volatile
    volatile double result;
    result = _mm256_cvtsd_f64(ymm0);
    result = _mm256_cvtsd_f64(ymm1);
    result = _mm256_cvtsd_f64(ymm2);
    result = _mm256_cvtsd_f64(ymm3);
    result = _mm256_cvtsd_f64(ymm4);
    result = _mm256_cvtsd_f64(ymm5);
    result = _mm256_cvtsd_f64(ymm6);
    result = _mm256_cvtsd_f64(ymm7);
    result = _mm256_cvtsd_f64(ymm8);
    result = _mm256_cvtsd_f64(ymm9);
}

_mm256_setzero_ps替代vxorpd来置0,_mm256_fmadd_ps来替代vfmadd231ps,_mm256_fmadd_pd来替代vfmadd231pd。

测试机器

M1 Pro Macbook Pro 2021,MacOS15
M4 Mac mini 2024,MacOS15
Windows dev kit 2023
miniforums 790s7
alibaba workspace 黄金版 经济版 ubuntu 20.04
其中FEX/Qemu/box64的操作系统为ubuntu 24.04 LTS
Prsim的操作系统为Windows 11 27744.1000

AVX2指令集探测方法

全平台:https://github.com/klauspost/cpuid/releases/tag/v2.2.9
MacOS:

arch -x86_64 sysctl -a | grep machdep.cpu.features

Windows:
CoreInfo:https://learn.microsoft.com/en-us/sysinternals/downloads/coreinfo
https://learn.microsoft.com/en-us/cpp/intrinsics/cpuid-cpuidex?view=msvc-170
Linux:lscpu

指令集测试结果

测试平台 AVX2
Rosetta2 x
Rosetta2 + crossover :white_check_mark:
Linux rosetta x
Linux QEMU :white_check_mark:
Linux exagear x
Linux Box64 :white_check_mark:
Linux FEX :white_check_mark:
Windows Prsim
Linux QEMU + crossover :white_check_mark:
Linux exagear + crossover x
Linux Box64 Wine :white_check_mark:
Linux Fex Crossover :white_check_mark:
Linux x86 native :white_check_mark:

吞吐量测试结果

测试平台 fp32(gflops) fp64(gflops)
M1 Rosetta2 32.90 16.43
M1 Rosetta2 + crossover 34.66 16.79
M4 Rosetta2 49.18 24.34
xeon linux 82.25 43.83
M1 PD Linux qemu 0.47 0.42
M1 PD Linux box64 96.76 48.73
M1 PD exagear 38.37 17.70
M1 PD prism 37.96 19.59
M1 PD FEX 45.92 23.30
M1 PD FEX crossover 44.8 22.62
M1 PD box64 wine 44.5 21.95
M1 PD exagear crossover 38.74 19.31
M1 PD qemu crossover 0.6 0.5
8cx gen3 29.47 14.70
7940hx 148.10 79.70
i7 11800h 68.10 34.93
Xeon windows 80.55 41.39

M1 PD box64可能是测试问题,数值异常,反复测试都是这个结果,但是转译win32后正常

1 个赞